Résumé
La dernière décennie a vu s’imposer le développement des méthodes de Deep Learning (DL), aussi bien dans le monde académique qu’industriel. Ce succès peut s’expliquer par la capacité du DL à modéliser des entités toujours plus complexes. En particulier, les méthodes de Representation Learning se concentrent sur l’apprentissage de représentations latentes issues de données hétérogènes, à la fois versatiles et réutilisables, notamment en Natural Language Processing (NLP). En parallèle, le nombre grandissant de systèmes reposant sur des données utilisateurs entraînent leur lot de défis.Cette thèse propose des méthodes tirant partie du pouvoir de représentation du NLP pour apprendre des représentations d’utilisateur riches et versatiles. D’abord, nous étudions la Recommandation. Nous parlons ensuite des récentes avancées du NLP et des moyens de les appliquer de façon à tirer partie des textes écrits par les utilisateurs, pour enfin détailler les modèles génératifs. Puis, nous présentons un Système de Recommandation fondé sur la combinaison, d’une méthode de représentation par factorisation matricielle traditionnelle, et d’un modèle d’analyse de sentiments. Nos expériences montrent que, en plus d’améliorer les performances, ce modèle nous permet de comprendre ce qui intéresse l’utilisateur chez un produit, et de fournir des explications concernant les suggestions émises par le modèle. Enfin, nous présentons une nouvelle tâche centrée sur la représentation d’utilisateur : l’apprentissage de profil professionnel. Nous proposons un cadre de travail pour l’apprentissage et l’évaluation des profils professionnels sur différentes tâches, notamment la génération du prochain job.
Source: http://www.theses.fr/2021SORUS274
.