Edit Content

Seminaire E-Commerce recense pour vous les différents ateliers marketing digital et événements autour du numérique afin de vous accompagner dans votre formation dans le digital.

Workload- and Data-based Automated Design for a Hybrid Row-Column Storage Model and Bloom Filter-Based Query Processing for Large-Scale DICOM Data Management by Cong-Danh Nguyen
<>div>

Résumé

Dans le secteur des soins de santé, les données d’images médicales toujours croissantes, le développement de technologies d’imagerie, la conservation à long terme des données médicales et l’augmentation de la résolution des images entraînent une croissance considérable du volume de données. En outre, la variété des dispositifs d’acquisition et la différence de préférences des médecins ou d’autres professionnels de la santé ont conduit à une grande variété de données. Bien que la norme DICOM (Digital Imaging et Communication in Medicine) soit aujourd’hui largement adoptée pour stocker et transférer les données médicales, les données DICOM ont toujours les caractéristiques 3V du Big Data: volume élevé, grande variété et grande vélocité. En outre, il existe une variété de charges de travail, notamment le traitement transactionnel en ligne (en anglais Online Transaction Processing, abrégé en OLTP), le traitement analytique en ligne (anglais Online Analytical Processing, abrégé en OLAP) et les charges de travail mixtes. Les systèmes existants ont des limites concernant ces caractéristiques des données et des charges de travail. Dans cette thèse, nous proposons de nouvelles méthodes efficaces pour stocker et interroger des données DICOM. Nous proposons un modèle de stockage hybride des magasins de lignes et de colonnes, appelé HYTORMO, ainsi que des stratégies de stockage de données et de traitement des requêtes. Tout d’abord, HYTORMO est conçu et mis en œuvre pour être déployé sur un environnement à grande échelle afin de permettre la gestion de grandes données médicales. Deuxièmement, la stratégie de stockage de données combine l’utilisation du partitionnement vertical et un stockage hybride pour créer des configurations de stockage de données qui peuvent réduire la demande d’espace de stockage et augmenter les performances de la charge de travail. Pour réaliser une telle configuration de stockage de données, l’une des deux approches de conception de stockage de données peut être appliquée: (1) conception basée sur des experts et (2) conception automatisée. Dans la première approche, les experts créent manuellement des configurations de stockage de données en regroupant les attributs des données DICOM et en sélectionnant une disposition de stockage de données appropriée pour chaque groupe de colonnes. Dans la dernière approche, nous proposons un cadre de conception automatisé hybride, appelé HADF. HADF dépend des mesures de similarité (entre attributs) qui prennent en compte les impacts des informations spécifiques à la charge de travail et aux données pour générer automatiquement les configurations de stockage de données: Hybrid Similarity (combinaison pondérée de similarité d’accès d’attribut et de similarité de densité d’attribut) les attributs dans les groupes de colonnes; Inter-Cluster Access Similarity est utilisé pour déterminer si deux groupes de colonnes seront fusionnés ou non (pour réduire le nombre de jointures supplémentaires); et Intra-Cluster Access La similarité est appliquée pour décider si un groupe de colonnes sera stocké dans une ligne ou un magasin de colonnes. Enfin, nous proposons une stratégie de traitement des requêtes adaptée et efficace construite sur HYTORMO. Il considère l’utilisation des jointures internes et des jointures externes gauche pour empêcher la perte de données si vous utilisez uniquement des jointures internes entre des tables partitionnées verticalement. De plus, une intersection de filtres Bloom (intersection of Bloom filters, abrégé en ) est appliqué pour supprimer les données non pertinentes des tables d’entrée des opérations de jointure; cela permet de réduire les coûts d’E / S réseau. (…)

Source: http://www.theses.fr/2018CLFAC019

.

Leave a Reply

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Releated Posts